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Introduction

A proton of low energy moving in the equatorial plane of the earth

will experience drift motions due to both the magnetic field (magnetic

gradient drift only, if the field is assumed to be that of a dipole) and

the electric field. The electric drift again separates into two parts -

the drift due to the "main" electric field (or "convection electric field")

existing in the frame of the earth, and that due to the earth's rotation.

Such motion has been analyzed by Chen 1970] who assumed that the

main field in the equatorial plane is a constant field from dawn to dusk.

He obtained a somewhat complex variety of proton orbits: the main purpose

of this work is to classify such orbits and to devise a simple procedure

by which one can determine, in the energy spectrum observed by a satellite

in the equator, which energies (of equatorial particles) correspond to
e

trapped trajectories and which to open ones. The elctric field used here

IStern, 19741 differs somewhat from the model used by Chen, giving a
L J
more realistic fit to high-latitude observations of the electric field,

but all results obtained here could be easily generalized for Chen's model.

One result indicated by this work is that at distances of 4 - 6

earth radii, a transition from trapped proton orbits to open trajectories

leading to the tail occurs at about 10 kev, the precise value depending

upon local time. Such a transition also seems to be indicated by particle

observations of Smith and Hoffman L1975a, b] , using Explorer 45. The

energy spectrum (at magnetically quiet times) of equatorial protons above this

energy can be explained by charge exchange PSmith and Hoffman , 1974] , but

increased flux observed below it seems to be related to the influx of parti-

cles on open orbits from the tail.

Qualitatively the situation may be viewed as follows. At very low ener-

gies and near enough to earth, electric drift due to the co-rotation field

is dominant, and charged particles tend to co-rotate and are thus trapped.
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At relatively high energies all electric drifts may be neglected and guiding

center motion is mainly due tomagic drift, which also tends to keep

*a icles trapped in the vicinity of the earth.

Now for equatorial electrons these two drifts are in the same direction

and tend to reinforce each other, while for equatorial protons the directions

are opposed. There may thus exist for protons an intermediate energy range

in which these two drifts approximately cancel and the drift in the main electric

field ("convection field") dominates the motion: drift orbits due to this field

are open and generally follow the noon-midnight direction, allowing an explr -

nation for the previously mentioned features of the energy spectrum.

The Electric Field

that the

Following previous work I Stern, 1974] we assume h main electric field

in the rotating frame has a form derivable from a scalar potential. On

closed field lines our model gives

E = - V (1)

k/2

0: - o o(o/ ick sin Y (2)

Here oL is an Euler potential for the dipole magnetic field (which is the

magnetic configuration assumed), given by

4 = a g 0 sin2 (5)

where g - 5.1 * 10 MKS is the dipole term in the harmonic expansion

of the earth's magnetic field, a is the earth's radius and 9 = r/a

Also, do is the value of / on the boundary of the polar cap and 2 0

is assumed to be the voltage across the cap. The power k reflects the

rate with which EI decreases near the polar cap boundary: Chen's model

is obtained if k = 2 , but electric field measurements at high latitudes

IHeppner, 1972] suggest that k = 4 is more realistic, and this value will

be assumed here.
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The total electric field - with axisymmetric rotation added - is

E = - V(o 1 + k) (4)

with = aW O (5)

where (A) ' 7-.3 10-5 rad/sec is the earth's angular velocity. Thus

in the equatorial plane, with k = 4

= - ( (o / a g o) 2 S sinf + a g (6)

The Hamilt onian

The Hamiltonian for the motion of a particle of charge e in the dipole

equator, in the presence of the fields described here, is

H = IB + e0. (7)

In dealing with protons, if e is dropped and is reckoned in volts, then

all energies are in electron volts and the magnetic moment p. of the par-

ticle (which is assumed to be conserved) is conveniently expressed in ev/B

The magnetic field B itself is given by

B Igl I /Y (8)

The Hamiltonian is a constant of the motion - that is, contours of

constant H in the ( 2,? ) plane for any given i describe trajectories

of protons having that value of p .

For convenience we may use the constancy of H' = H/Igo , which can

be expressed in terms of positive constants q and p (no relation to

canonical variables)
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H' = - q 2 sin - p (9)

where

q d /a gO) /Igo1 (10)

p = a2 ( = 2.9 109 m2/sec (11)

If the radius of the polar cap is taken as a/4 and the mean electric

field there is Eo volts/m , then

q 2 , 10 E (12)

The calculation may be made more general if as many constants as possible

are removed by suitable normalization of quantities. To remove q and p,

one first divides (9) by q and then defines new units of length, such

that T is replaced by

R -= (q/p)1/5 (15)

Specifically, if one defines

W = H'/( q p2)1/3 (14)

M = (q2/p 5)/ (15)

then equation (9) transforms into

W = MR - - R2 sin - R- 1 (16)

which will be the basic conservation law used in what follows.
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Qualitative Analysis

If W is considered as a function of (R, \ ), proton trajectories in

the equatorial plane will be given by contours of constant W and "last

closed trajectories" will be characterized by contours which cross them-

selves (see Figures 1, 2 and 3) o At a crossing point the direction of V W

is not defined and therefore

Vw = 0 (17)

The reverse however is not true : VW may vanish at a point which is

not a crossing point but rather the limit point of a set of nested closed

trajectories (e.g. point P2  in Figures 1 and 2).

.The \-derivative of (16) shows that (17) may only be satisfied on the

dawn-dusk line, at points where

sin 7 = +1 (18)

It is instructive to examine the dawn side and the dusk side of that line

separately.

On the dusk side (sin'? = 1) the vanishing of the R-derivative of

(16) gives

1 = 3 M R- 2 + 2 R3  = (R) (19)

The function (R) tends to infinity at both 0 and oo and it

has a single minimum at R = M1/ 5  The value of (R) at the minimum

point will be smaller or larger than 1 , depending on whether M is less

or more than

M = 55/3 0.0684 (20)

and accordingly (19) - and hence (17) - will be satisfied either at two

points or at no points at all.
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On the dawn side (17) requires

1 = 3 M R- 2 - 2 R = (R) (21)

The function J(R) has a negative derivative and descends continuously

from (0) = oo to 70 (o) = - o . There exists therefore on the

dawn side a single solution of (17) for all values of M .

The values of W corresponding to solutions of (17) will be called

critical values. In particular, W1 and W2 will denote critical values

corresponding to the dusk side (W1 having a larger value of R than W2 ) and

W3 will denote critical values on the 
dawn side. In all cases the critical

values depend on M , so that W1, W2 and W3 are all functions of M , displayed

in graphical form in Figure 4

Interpretation
----------------------

If the point for which Wi was derived is a crossing point, then the

contour W(M, R, f) = W (M) , for any given M, gives in part the boundary

between a region of trapped trajectories and a region of "open" ones. If,

on the other hand, W. represents a limit point of a nested set of trapped

trajectories, then the line W(M,R, ) = W. (M) shrinks to a point and does

not properly exist. It will turn out that the first case applies to W1 and

W3 while the second holds for W2 .

As M is varied, the map of contours of constant W(M, R, P ) gradually

changes. Three regimes then exist and will be denoted by numbers 1, 2 and 3 ;

they are illustrated by the Figures bearing the same numbers and by the

numbered ranges of M in Figure 4 . In regime 1 (illustrated schematically

by Figure 1 and also,by Figures 2 in the work of Chen [1970] ) WI > W3

and the trapped region defined by W, encloses the one which is defined by

W3, so that it alone determines whether an orbit is trapped or not. In

regime 2 (Figure 2 ; also Figures 3b and 4a in the work of Chen [1970 ,

where Figure 3a gives the transition between regimes 1 and 2 ) W 1 < W3 and

the trapped regions determined by W1 and W3  are disjoint. Finally, in

regime 3 (Figure 3 here, and Figures 4b and 5 in Chen's work) the trapped
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region defined by W1 disappears, since (19) no longer has any real solutions,

leaving just the trapped region defined by W3 , which in all three regions

surrounds the origin.

It is instructive to sketch qualitatively the variation of W along

the dawn-dusk line, and this is done in the lower parts of Figures 1, 2

and 3 . Note that this variation has extrema at all points at which (17)
are

holds, although the shapes of these extrema only schematically shown

in the figures.

Each of the contours corresponding to a crossing point in one of these

figures - except for the W3  contour of Figure 1 - consists of two parts

- one of them forming a closed loop, the other extending to infinity at

both its ends. These will be called the closed and open branches of the

contours of W1 or W3  .

It is easily shown that the crossing point - which belongs to both branches

- is the point closest to the origin on the open branch and the point farthest

from the origin on the closed one. The proof is as follows. For given

fixed values of Wi and M , these contours satisfy the equation

Wi  = MR -3  R2 sin - R - l  (22)

(plus for i = 3 , minus for i = 1). They therefore define a functional

relationship R = R(\9) , with an inverse function \P = 'O(R) . At the point

on the contour at which R is extremal dR/dY vanishes and therefore

d /dR diverges. From (22), however,

_ cosP d.P/dR = 2 Wi R 3 - 5 M R- 6 + 3 R"4  (23)

Therefore such extremal points only occur in the dawn - dusk plane

where cos Y vanishes. There exists only one such point on open branches,

namely the crossing point, which therefore is a point of minimum R .
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In the immediate vicinity of the crossing point the contours 
of

constant W. assume the form of an X , and the curve of constant R
1

through that point is a circular arc tangential to a line which bisects

that X . One side of the X then belongs to the open branch and R is

minimal there, from which it follows that for the other side, belonging to

the closed branch, R is maximal at the crossing point. However, the

closed branches (except for that of W3  in Figure 1 ) have only two

points with cos f = 0 . The other point with that property is therefore

a minimum point for R , showing that R at the crossing point is an

absolute maximum value for the entire closed branch.

The Profi le "Line

Suppose one is observing equatorial protons with various energies 
at

some given point (r, f) at which the magnetic field intensity is B .

Given the various constants of the model one can then derive R for the

observation point and values of M for each observed value of the kinetic

energy K . If 3 is the distance in earth radii and i is the magnetic

moment in kev/gamma, then

R = 0.412 E g (24)

M = 58.4 E2/3 (25)

The objective of this section is to develop in that case a simple way

of distinguishing which values of M (or of K) correspond to open

trajectories and which to closed ones trapped near the earth.

For every valueof observed energy there corresponds by (25) a value

of M , and by equation (16) the corresponding value of W can then

be computed. Since (R,'R ) are fixed, equation (16) shows that all related

pairs of values (W, M) observed at the given point belong to a single

straight line in the (W, M) plane, which will be called the profile line

of the observation point. The type of trajectory may change from trapped to

free or vice versa only at points at which the profile line crosses one of
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the lines

W = W1(M) , W = W3 (M) (26)

To establish which crossings do represent a change in type of trajectory

we follow the profile line from its right-hand side, corresponding to large

values of M . Equation (21) shows that for any given M the normalized

radial distance R3 to the crossing point of W3  satisfies

3 M = R32 + 2 R 3
5  (27)

In the limit of large R

M 2 R35/3

(28)

3 = 5 R3 /3

On the dusk side the line W = W3 then approaches the origin within a

distance R 6 , where 4 1 (see Figure 3). Substituting in (16)

gives, in the same limit

2 3 5 = 5 3

5 25 (29)

The inequality yields

S3- o.4 (30)

meaning that the normalized minimum distance R on the closed branch of

W = W3 also becomes large under these circumstances. Since the value of

R for the observation point is fixed and finite, it follows that the

upper end (M - o ) of the profile line always starts at points correspon-

ding to the interior of the closed branch in Figure 3
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At M = 0 equation (27) shows that R3 - 0 , i.e. the observation point

is oftsid. the inner closed p ranch of Wa . Thus the profile line crosses

the line W = W3 (M) at least once. If the first crossing of this occurs

in regimes 2 or 3 , it changes the type of trajectory from trapped to open.

If the change occurs in regime 1 , no change occurs, because all crossings

of W3 there are from one trapped mode to another (see Figure 1) .

A crossing of the line W = W1(M) will change the status of the

trajectories only if the closed branch of that line is involved. This

will generally be the case, but a simple check is at any rate available to

ascertain this, based on the theorem proved in the preceding section. To

perform this check, one notes the value of M associated with the crossing

point and then compares the value of R associated with this value of M
and

by equation (21) (Table 1 kFigure 5) with the value of R derived for

the observation point. If the latter is smaller, the crossing is on the

closed branch.

It is interesting to examine the family of profile lines having the

same value Ro  of the normalized radial distance but different values of

magnetic longitude Y . All these lines are parallel and are located

inside the strip bounded by

W = M Ro 3  - 2 R R -1 (31)

and

W = M Ro- + RO2 + Ro-1 (32)

For R = Ro there will exist some positive solution Mo for M satis-

fying equation (21). The point on the profile line (32) corresponding to

Mo then also belongs to the line W = W3 (M) , since both conditions (16)

and (21) are fulfilled. In fact, the profile line will be tangential to

the W3  curve, since (it can be shown) both lines have the same slope at

Mo . Similarly, the bounding line (31) is tangential to W = W2 (M) , pro-

vided the two lines meet. The situation is illustrated in Figure 6 , for

a radial distance of 5 earth radii and given Eo 
= 0.01 volt/m . A third

line in the middle of the strip represents observations on the noon-midnight

meridian, and heavily drawn portions of the profile lines represent open

trajectories.
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Conclusions

At distances of the order of 5 earth radii, there will exist for each

observation point a range of proton energies for which trajectories are

connected to the tail, while at lower and higher energies trajectories

are trapped.

Smith and Hoffman [ 1973a, Fig.3 observe at quiet times an energy

spectrum of equatorial protons which has two peaks, separated by a dip in

the range 10 - 100 kev. The dip and the high energy peak can be explained

Smith and Hoffman 1973b, 1974] in terms of charge exchange effects, but
the

the peak at the lower energies falls in the region in which present theory

indicates open trajectories and therefore appears to represent particles

entering from the tail, the source being intense enough to overcome

charge-exchange losses.

The range of open trajectories is also expected to have a low-energy

boundary and this can be compared to a similar boundary observed by

McIlwain I1972 , Figure 6] , shifting towards lower energies as local

time varies from evening to early morning hours.

This shift agrees with the predictions of the model, but there exist

notable differences the most significant being the absence of a similar

effect on the day side. However, plasma sheet particles require relatively

long times to reach the day side, during which their motion may be modified,

and in addition, a better model of the magnetic field is probably needed

at 6.6 earth radii, where McIlwain's observations were made.

The actual electric field of the earth varies in time and therefore,

strictly speaking, it cannot be represented by a scalar potential. If however

its variation is slow and consists mainly of a change in Eo , then to lowest

approximation the method may still be used - at least on the night side - and

only the value of Eo  used in (24) and (25) is changed. Note that 
the

variation of R derived from (24) implies a time-dependent profile line,

which might cause the trapping of particles initially on open trajectories.
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Two final points may be worth pointing out. First, it should be noted

again that the basic reason protons have more complex trajectories and can

reach points near earth more easily than electrons of the same magnetic

moment is that their co-rotation drift opposes their magnetic drift. If

the earth's magnetic axis were reversed, these properties would hold for

electrons rather than for protons.

Now from Pioneer 10 observations it appears that the magnetic dipole

axis of Jupiter indeed is aligned in the opposite way from that of the

earth, relative to the rotation vector. Observations made by that space-

craft also indicate that Jupiter's magnetic field contains a very sizable

ring current - causing distortions of the field comparable to those found

in the earth's magnetic tail - and that in the trapped radiation found

there, electrons greatly predominate (by contrast, the terrestrial ring

current is mainly due to protons). This suggests that Jupiter might have

an electric field similar to the earth's and that the same processes

described here for protons are responsible for Jupiter's trapped electrons.

The second point is an analogy between the method of the profile line

and the Clemmow-Mullaly-Allis (CMA) diagram for the propagation of waves in

a cold two-component plasma Stix, 1962 . In that case, the propagation

of waves in any given plasma depends on an appropriate dispersion relation

and there exists an infinity of such relations, depending on the magnetic

field intensity B and on the plasma density n . If, however, one merely

asks which propagation modes are possible in a given plasma, one only needs

to know under what conditions modes appear or disappear. In the plane in

which the cartesian coordinates are B and n (or suitable functions thereof)

these conditions generally occur along certain lines, and a glance at the

diagram in which all such lines are drawn, dividing the plane among various

modes - which is the CMA diagram - quickly yields a large amount of useful

qualitative information. In this analogy, Figure (4) corresponds to the

CMA diagram, while contoured planes like those shown in Figures 1 - 3 ,

in which lines of constant W are mapped, correspond to graphs of the

dispersion relation.
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Captions to Fig ures and Table

Figure 1 Schematic structure of contours of constant W in

the equatorial plane, for values of M for which W > W3
( M 4 0.04042 ) . Below the contours the variation of W

along the dawn-dusk line is schematically shown.

Figure 2 Similar to Figure 1 , for the range 0.04042 > M> M
O

for which W: L W3

Figure 3 Similar to Figure 1, for M >Mo , the regime in which

the W caontour no longer exists.

Figure 4 The contours of WI(M), W2 (M) and W3 (M) in the (W,M) plane.

Figure 5 The relation between M and R along the line W = WI(M)

Figure 6 Similar to Figure 4 , with the profile lines drawn for

?= 5 , sin4 = 0 ,+ .

Table 1 Values of M corresponding to various values of R along

the line W = W1(M) . The plot of this relation is given in

Figure 5 .



Table 1

R M x 100 R M x 100

0.585 6.840 0.73 3.943

0.6 6.816 0.74 3.460

0.62 6.706 0.75 2.930

0.64 6.495 0.76 2.350

0.66 6.171 0.77 1.718

0.68 5.720 0.78 1.032

0.7 5.129 0.79 0.290

0.72 4.381
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